Graduate Certificate in AI Power in Clinical Trials
-- ViewingNowThe Graduate Certificate in AI Power in Clinical Trials is a crucial course designed to meet the growing industry demand for AI-skilled professionals in healthcare. This certificate course equips learners with essential skills to leverage AI technologies in clinical trials, enhancing efficiency and accuracy.
2,295+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Fundamentals of Artificial Intelligence (AI): An introduction to the basics of AI, including machine learning, deep learning, and natural language processing. This unit covers the core concepts and techniques that are essential for understanding AI applications in clinical trials.
⢠Clinical Trials Design and Conduct: This unit focuses on the design and conduct of clinical trials, including randomization, blinding, and statistical analysis. It also covers the ethical considerations and regulatory requirements for clinical trials.
⢠AI in Clinical Trial Data Management: This unit explores the role of AI in managing and analyzing clinical trial data, including data cleaning, data integration, and data visualization. It also covers the use of AI algorithms for predictive modeling and decision making in clinical trials.
⢠AI in Clinical Trial Recruitment and Retention: This unit discusses the use of AI in identifying and recruiting eligible participants for clinical trials, as well as in retaining them throughout the study. It covers topics such as patient engagement, social media marketing, and predictive modeling.
⢠AI in Clinical Trial Safety and Pharmacovigilance: This unit examines the role of AI in monitoring and ensuring the safety of clinical trial participants, including adverse event detection and reporting. It also covers the use of AI in pharmacovigilance, or the post-marketing surveillance of drugs.
⢠AI in Real-World Evidence and Outcomes Research: This unit explores the use of AI in generating and analyzing real-world evidence, or data that is collected outside of clinical trials. It covers topics such as observational studies, patient-reported outcomes, and comparative effectiveness research.
⢠Ethical and Legal Considerations in AI-Powered Clinical Trials: This unit discusses the ethical and legal considerations that arise when using AI in clinical trials, including data privacy, informed consent, and transparency. It also covers the potential impact of AI on healthcare disparities and health equity.
⢠Emerging Trends and Future Directions in AI-Powered Clinical Trials:
ę˛˝ë Ľ 경ëĄ
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë